Recovering Credible Trade Elasticities from Incredible Trade Reforms

Alessandria, Khan, Khederlarian, Ruhl, and Steinberg

NBER ITI Meeting — April 2025

Intro

- ▶ Trade elasticity: most important concept in international economics
- ▶ Structural interpretation: response to "canonical" reform: unanticipated & once-and-for-all
- Reduced form estimates: vary widely, both across time horizons but also across contexts
- ▶ This paper: canonical reforms don't exist in the data!
 - ► Empirical: compare "more-canonical" vs. "less-canonical" reforms
 - ▶ Quantitative: recover canonical elasticity by feeding data through structural model

1

Dynamic policy, dynamic trade

- Trade is dynamic
 - Export participation decision are forward-looking due to front-loaded costs, back-loaded returns
- ▶ Policy is also dynamic
 - Anticipation: PTAs, GATT rounds negotiated & gradually phased in
 - ▶ Uncertainty: Brexit, U.S-China trade war, ongoing threats to Canada & Mexico
- Trade depends on underlying stochastic policy process, not just observed sequence of realizations
- → Same observed policy change can generate different trade responses under different expectations

Preview: empirics

- ▶ U.S. import data from 1974–2017
- Assign country-product-year observations into regimes: NNTR, MFN, PTA, UTPP.
 Compare tariff & trade dynamics within regimes vs. across regimes.
 - ► Within regimes: Common & transitory, low trade elasticities (esp. in LR)
 - ► Across regimes: Rare & persistent, high trade elasticities (esp. in LR)
 - Sample mostly comprised of within-regime changes ⇒ full-sample estimates get responses to major reforms wrong
- Case studies: China & Vietnam
 - Same policy path: Embargo → NNTR → conditional MFN → "permanent" MFN
 - ▶ More persistent tariffs, higher LR trade elasticities than typical regime switch
 - ▶ Different trade dynamics in SR ⇒ different expectations

Preview: model

- Heterogeneous firms, sunk entry costs, fixed costs probabilistically improve market access
 - Alessandria, Choi, and Ruhl (2021) with many goods in partial equilibrium
- Illustrate measurement biases from non-canonical policy dynamics
 - Expected future tariffs change less than observed tariffs ⇒ ↓ LR elasticity
 - ► Expectations change before policy ⇒ ↑ SR elasticity
- ▶ Recover canonical trade elasticity using China & Vietnam case studies
 - Estimate regime-switching probability to match reduced-form elasticity path as in Alessandria et al. (2025a)
 - ▶ Conduct counterfactual canonical reform. LR elasticity \approx 14.
 - Reduced-form LR elasticity biased ↓ due to anticipation of MFN grant, positive prob. of NNTR (even after WTO!)
 - ▶ Reduced-form SR elasticity biased ↑ for Vietnam due to rising prob. of MFN access

Related Literature

Strands:

- ► Trade dynamics (data): Galloway et al. (2003), Baier-Bergstrand (2007), Yilmazkuday (2019), Khan-Khederlarian (2020), Boehm et al. (2023)
- ► Trade dynamics (models): Baldwin-Krugman (1989), Das et al. (2007), Alessandria-Choi (2007), Ruhl-Willis (2017), Alessandria et al. (2021), Steinberg (2024), Fitzgerald et al., (2024)
- ► Trade-policy uncertainty: Ruhl (2011), Pierce-Schott (2016), Handley-Limão (2015 & 2017), Steinberg (2019), Caldara et al. (2020), Bianconi et al. (2021), Alessandria et al. (2025ab)

Lessons:

- → Reduced-form estimates biased by interactions between forward-looking decisions and policy dynamics
- → Some reforms "more canonical" than others. Estimates from "less canonical" reforms lack exteral validity.
- → Disentangling effects of past reforms vs. anticipation & uncertainty requires model
- → Ideal setting: well-specified policy process and few realized policy changes

5

Roadmap

1. Empirical evidence

- 2. Model + numerical experiments
- **3.** Calibration + recover structural elasticity

Data

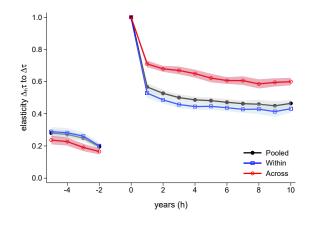
- ► Sample: U.S. imports from 1974–2017
 - Captures transition from higher tariffs in 70s & 80s to low tariffs today
 - ► Covers major reforms: China's NTR grant, NAFTA, GATT rounds, GSP, etc.
- Aggregation: 5-digit SITC rev. 2
 - ▶ 1974–1988 U.S. imports at 8-digit TS-USA level: Concordance by Feenstra (1996)
 - ▶ 1989–2017 U.S. imports at 8-digit HTS level: Concordance using UNCTAD
- ▶ 44 years (t), 163 countries (j), 2,032 goods (g), 2,279,579 observations (jgt)
- Policy at jgt level: applied tariff (=duties/FOB imports)
 - Potentially different from scheduled tariffs due to aggregation, measurement error, etc.
 - Same jgt can have transactions under different schedules due to rules of origin, GSP requirements, etc.

Approach #1: Within vs. across tariff regimes

- ► Four statutory policy regimes: **MFN**, Non-Normal Trade Relations (**NNTR**), Preferential Trade Agreement (**PTA**), Unilateral Trade Preference Program (**UTPP**)
- ► Compare policy and trade dynamics within vs. across regimes

Tariff changes

From	То	N # jgt	Mean (p.p.)	Median (p.p.)	Std. dev. (p.p.)	
(a) Within						
NTR	NTR	1,352,360	-0.15	0.00	9.47	
NNTR	NNTR	10,542	-0.25	0.00	9.25	
PTA	PTA	75,910	-0.12	0.00	1.34	
UTPP	UTPP	149,526	-0.03	0.00	1.04	
(b) Across						
NNTR	NTR	1,523	-27.63	-26.17	24.04	
NTR	PTA	10,291	-3.01	-1.80	4.57	
NTR	UTPP	29,860	-4.02	-2.90	14.53	
Total		1,671,098	-0.17	0.00	8.92	


Transition frequencies (pct.)

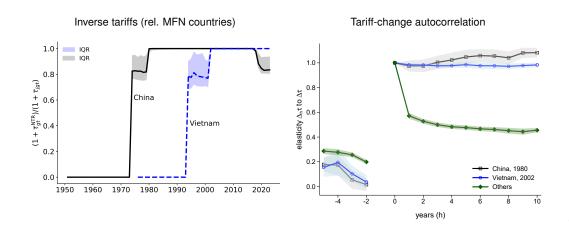
		NNTR	NTR	PTA	UTPP	
NNTR	jg	80.02	18.66	0.00	1.31	
	j	89.37	9.22	0.00	1.41	
NTR	jg	0.05	96.94	0.65	2.37	
	j	0.33	88.65	0.18	10.85	
PTA	jg	0.00	8.58	91.42	0.00	
	j	0.00	0.00	100.00	0.00	
UTPP	jg	0.01	16.63	0.94	82.42	
	j	0.00	10.35	0.47	89.18	

Across-regime tariff changes are more persistent

$$\Delta_h \tau_{jgt} = \beta_h^{\tau,W} \Delta_0 \tau_{jgt} \text{Within}_{jgt} + \beta_h^{\tau,A} \Delta_0 \tau_{jgt} \text{Across}_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

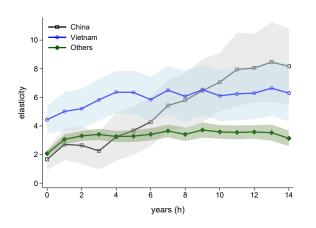
- ► Tariff-change autocorrelation, conditioning on regime switches
 - $ightharpoonup Within_{jgt} = \mathbb{1}_{\left\{ \mathsf{regime}_{jgt}
 eq \mathsf{regime}_{jgt-1}
 ight\}}$
 - $\blacktriangleright \ \mathsf{Across}_{\mathit{jgt}} = \mathbb{1}_{\left\{ \mathsf{regime}_{\mathit{jgt}} = \mathsf{regime}_{\mathit{jgt}-1} \right\} }$
- δ_{gt} : common variation across countries, e.g. GATT rounds. Bigger differences when excluded.
- β_h^{τ,W} ≈ pooled β_h^τ because sample mostly comprised of within-regime obs

Across-regime tariff changes have higher trade elasticities


$$\Delta_h v_{jgt} = -\beta_h^{v,W} \Delta_h \tau_{jgt} \text{Within}_{jgt} - \beta_h^{v,A} \Delta_h \tau_{jgt} \text{Across}_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}.$$

- ▶ DiD with $\Delta_h \tau_{jgt}$ instrumented by $\Delta_0 \tau_{jgt}$ (Boehm et al. 2023)
- δ_{jt} : bilateral exchange-rate movements, exporter business cycles
- δ_{gt} : good-specific demand shocks, multilateral policy changes
- ▶ Again, $\beta_h^{v,W} \approx \text{pooled } \beta_h^v$
- Robust to other specifications (e.g. ECM), industry-j-t effects

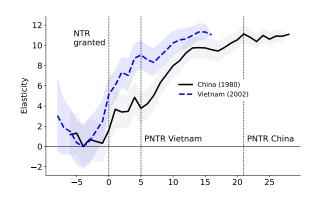
Approach #2: Case studies of China & Vietnam


- Same observed policy trajectory: embargo → NNTR → MFN
- Ex post, "most canonical" reforms in US trade history
- ► Ex ante, lots of uncertainty

CHN & VNM have higher trade elasticities than other countries

$$\Delta_h v_{jgt} = -\beta_h^{v, \text{CHN}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{CHN}\}} - \beta_h^{v, \text{VNM}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{VNM}\}} - \beta_h^{v, \text{OTH}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{Other}\}} + \delta_{jt} + \delta_{gt} + u_{jgt} \mathbb{1}_{\{j = \text{Other}\}}$$

- Condition on countries instead of regime changes
- Includes all tariff changes for China and Vietnam, not just MFN grant
- Long run: CHN and VNM similar, larger than other countries (and also typical regime change)
- Short run: CHN similar to other countries but VNM higher (and similar to typical regime change)


Event-study to MFN access shows even higher elasticities

$$\textit{v}_{\textit{jgt}} = \sum_{t'=1974}^{2008} \beta_{t}^{\text{v},\text{CHN}} \mathbb{1}_{\{t=t' \land j=\text{CHN}\}} \textit{X}_{g} + \sum_{t'=1994}^{2017} \beta_{t}^{\text{v},\text{VNM}} \mathbb{1}_{\{t=t' \land j=\text{VNM}\}} \textit{X}_{g} + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + u_{\textit{jgt}}.$$

 Elasticity of trade to gap between NNTR and MFN tariffs ("NNTR gap"):

$$X_g = \log(1 + \tau_{g,1999}^{NNTR} - \tau_{g,1999}^{MFN})$$

- Dual meaning: tariff reduction upon MFN access, but also exposure to risk of losing that access
- Similar LR elasticities, substantially larger than country averages and for average regime change
- Similar pre-MFN elasticities, but VNM's starts rising several years before MFN access

Roadmap

- 1. Empirical evidence
- 2. Model + numerical experiments
- 3. Calibration + recover structural elasticity

Overview of the model

- ▶ Partial equilibrium version of Alessandria, Choi and Ruhl 2021 (ACR 2021)
 - Slow adjustment due to exporter life-cycle, large gap between SR and LR response
 - Expectations about future trade policy, not current policy, drive export participation

▶ Firms

- ▶ Heterogeneous in productivity (z), variable trade cost (ξ)
- ▶ Die with probability 1 $-\delta$, replaced by new firm (fixed mass)
- Pay sunk cost to export next period, smaller fixed cost to continue
- ▶ New exporters start with low export capacity (ξ_H)
- ▶ Longer tenure as exporter \Rightarrow greater chance of low iceberg cost (ξ_L w.p. 1 − ρ_ξ)

Trade policy

- Allow for innovations to current tariffs (τ) and expectations about future tariffs $(\mathbb{E}\tau')$
- Exporting threshold depends on expected z, ξ and $\mathbb{E}\tau'$

Production, demand, static optimization

▶ Production technology (z = productivity; $\ell = \text{labor}$):

$$y_t = z_t \ell_t$$

• Export demand curve (p_t = price; τ = tariff):

$$d_t(p_t, \tau_t) = (p_t \tau_t)^{-\theta}$$

• Resource constraint (ξ = variable trade cost):

$$y_t \geqslant \xi d_t(p_t, \tau_t)$$

▶ Given z, ξ , τ , choose p, ℓ to max flow profits

$$\pi(z_t, \xi_t, \tau_t) = \max_{p, \ell} p d_t(p_t \tau_t) - w_t \ell_t$$
 s.t. $z_t \ell_t \geqslant d_t(p_t, \tau_t) \xi_t$

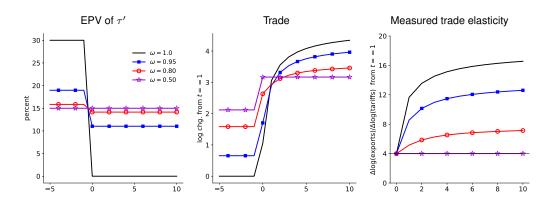
Exporter life cycle, dynamic optimization

- Variable trade cost (ξ) captures current export status
 - ▶ ∞: non-exporter
 - ξ_H: High iceberg (low-capacity) exporter
 - ξ_L : low iceberg (high-capacity) exporter
- ▶ Costs of exporting in t + 1 depend on current export status in t
 - ▶ New exporters: pay f_0 , start with low export capacity (ξ_H)
 - Continuing exporters: pay f_1 , switch to higher/lower export capacity with prob. $1 \rho_{\xi}$
- ▶ Given z, ξ, τ , choose whether to export at t + 1 to max PV of profits:

$$V\left(z,\xi,\tau\right) = \pi_{gt}(z,\xi,\tau) + \max\left\{\underbrace{-f(\xi) + \frac{\delta(z)}{1+r}\mathbb{E}V\left(z',\xi',\tau'\right)}_{\text{export}},\underbrace{\frac{\delta(z)}{1+r}\mathbb{E}V\left(z',\infty,\tau'\right)}_{\text{don't export}}\right\}$$

• Solution characterized by entry + exit thresholds that depend on $z,\,\xi,$ and $\mathbb{E} au'$

Aggregation, trade elasticities


Aggregate exports:

$$EX_{t} = \sum_{\xi \in \{\xi_{L}, \xi_{H}\}} \int_{z} p(z, \xi, \tau_{t}) d_{t}(z, \tau_{t}) \varphi_{t}(z, \xi) dz.$$

- Per-firm sales (pd) depend on current tariffs
- Distribution of productivity and export status (φ) depend on past and future tariffs
- Mapping to structural trade elasticities:
 - ▶ SR response to *unanticipated* reform: demand elasticity = θ
 - ▶ LR response to *permanent* reform: $> \theta$, increasing in ξ_H/ξ_L and ρ_{ξ}


Experiment #1: persistent vs. transitory shocks

- ullet Two-state Markov process: high vs. low tariffs, switching probability 1 $-\omega$
- ▶ Start with τ_H for $= -\infty, \dots, -1$, then switch to τ_L for $t = 0, \dots, \infty$
- ▶ Compare canonical reform ($\omega = 1.0$) to less persistent reforms ($\omega \in \{0.95, 0.8, 0.5\}$)

Experiment #2: shocks to expectations

- ▶ Four-state Markov process: $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
 - $\tau_{HP} \rightarrow \tau_{LP}$: \downarrow tariffs only
 - $\tau_{HP} \rightarrow \tau_{HT}$: \downarrow persistence only
 - $\tau_{HP} \rightarrow \tau_{LT}$: simultaneous \downarrow in tariffs and persistence in t=0
 - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$: \downarrow persistence in t = -1, then \downarrow tariffs in t = 0

Experiment takeaways

- Transitory reforms have lower long-run trade elasticities
 - Post-reform trade suppressed by uncertainty about reform duration
 - Pre-reform trade boosted by expectation that reform could occur
- Anticipated reforms have higher short-run trade elasticities
 - Trade begins to react when expectations change, not just when tariffs change
- Reforms can be non-canonical in different ways
 - Across-regime tariff changes more canonical in sense of experiment #1, but less canonical in sense of experiment #2
 - ► China & Vietnam similar in sense of experiment #1, but Vietnam less canonical in sense of experiment #2

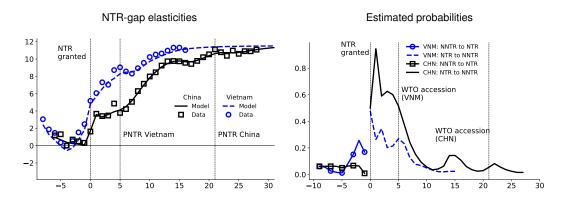
Roadmap

- 1. Empirical evidence
- 2. Model + numerical experiments
- 3. Calibration + recover structural elasticity

Overview of quantitative approach

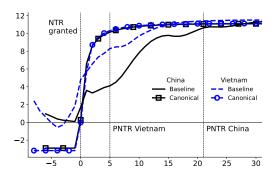
- ▶ Leverage China & Vietnam case studies using Alessandria et al. (2025) methodology
- Model overview
 - ▶ Many goods g = 1, ..., G with tariffs $\tau_{gt}(s)$ that depend on trade-policy state s
 - ▶ Two states: NNTR (s = 0) and MFN (s = 1)
 - ▶ Time-varying stochastic process $\{\omega_t(s, s')\}_{t=0}^{\infty}$
- Estimate trade technology to match modern-day steady state
 - Key input: exporter-level panel data
- Estimate ω_t to match transition from embargo
 - Key input: NNTR-gap elasticity
- ▶ Use calibrated model to conduct canonical reform, measure long-run trade elasticity

Step #1: Calibrate steady state to firm-level trade dynamics


- ► For each country, use firm-level panel data to compute facts about cross-sectional distribution and life-cycle dynamics of export participation
- Calibrate production & trade technologies so that PNTR steady state matches these facts

	Targets					Parameters			
Country	Export part. (%)	Exit rate (%)	Incumbent prem.	Log CV exports		<i>f</i> ₁	ξн	σ_z	
China Vietnam	28 11	11 15	2.9 4.41	2.27 2.91	0.73 1.57	0.342 0.657	3.92 5.89	1.50 1.69	

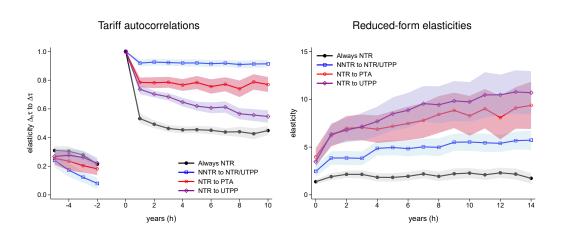
- ▶ Note: Assign demand elasticity θ externally based on Soderberry (2018) estimates
 - Reminder: θ = canonical SR elasticity
 - Same as measured SR elasticity in experiments, except with anticipation shocks
 - Works for China & Vietnam, even though latter has higher measured SR elasticity


Step #2: Calibrate transition to aggregate trade dynamics

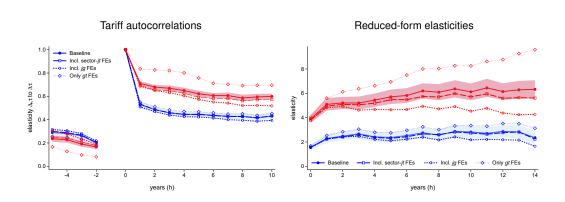
- Calibrate policy process to match elasticity of trade to NNTR gap
 - Pre-NTR dynamics identify $\omega_t(NNTR, MFN)$
 - ▶ Post-NTR dynamics identify $\omega_t(MFN, NNTR)$

Step #3: Measure canonical LR elasticities

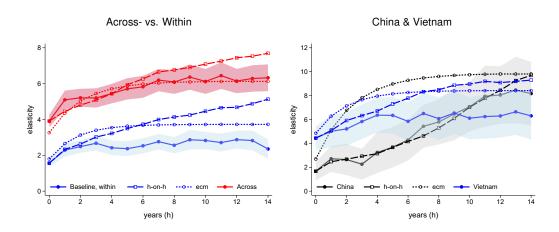
- Start in NNTR steady state, then do unanticipated + permanent switch to NTR
- Measure canonical LR elasticity as SS-to-SS change in NNTR-gap elasticity
 - ► China: -14.0
 - ▶ Vietnam: -14.3
 - ➤ ~25% larger than observed change in NNTR-gap elasticity

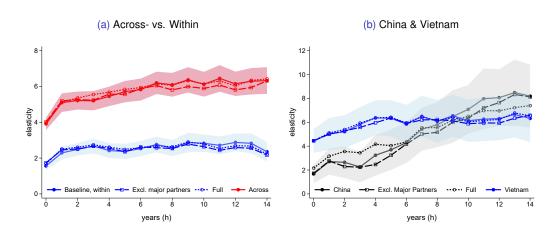


Summary & Conclusions

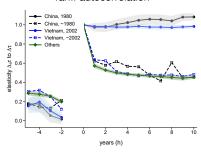

- Empirical evidence on more-canonical vs. less-canonical reforms
 - Most reforms occur within tariff regimes. Transitory, with low long-run trade elasticities.
 - ▶ Regime changes rare but more persistent. Higher long-run trade elasticities, but also higher short-run elasticities, likely due to anticipation.
 - ▶ Most canonical: China & Vietnam MFN access. Very high long-run trade elasticities. Differences in short run due to differences in anticipation.
- Recover canonical elasticity path using quantitative model
 - Estimate expectations for China & Vietnam by matching reduced-form evidence
 - \blacktriangleright Use calibrated model to conduct canonical reform. LR trade elasticity \approx 14. Much larger than previously thought!
- Leveraging less canonical reforms more complicated, but also more interesting
 - Ambiguity about distribution of potential tariff changes, anticipation during negotiations, phased-in tariff changes, etc.

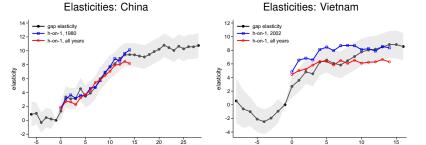
<u>Appendix</u>


Across vs. within regimes: detailed breakdown


Across vs. within regimes: fixed effects

DiD vs. ECM




Sample design

CHN & VNM: going from DiD to event study

years (h)

years (h)